Аннотация рабочей программы дисциплины по направлению 09.03.01 Информатика и вычислительная техника, профиль: Технологии разработки программного обеспечения

Архитектура вычислительных систем

Наименование разделов и тем дисциплины:

№	Содержание раздела
Раздел 1	История появления ЭВМ. Классификация и основные направления развития современных вычислительных систем. Принципы фон Неймана. Иерархия памяти. Главные составляющие и особенности архитектуры вычислительных систем.
Раздел 2	Параллелизм в архитектуре вычислительных систем Скалярная, конвейерная и параллельная обработка данных. Закон Амдала для теоретической оценки ускорения выполнения программ в параллельном режиме. Факторы, влияющие на производительность. Методы оценки производительности вычислительных систем, бенчмарки.
Раздел 3	Векторно-конвейерные вычислительные системы. Общая характеристика. Примеры. Факторы, влияющие на производительность.
Раздел 4	Массивно-параллельные вычислительные системы. Общая характеристика, примеры, факторы, влияющие на производительность. Вычислительные кластеры.
Раздел 5	Компьютеры с общей памятью. Кэш-когерентность. NUMA и ccNUMA архитектуры. Примеры.
Раздел 6	Особенности архитектуры современных процессоров (суперскалярность, VLIW, многоядерность, концепция RISC, SIMD-поддержка). Спецпроцессоры (CELL, GPU).
Раздел 7	Метакомпьютинг: особенности глобально распределенных вычислительных сред. Интернет-компьютинг, GRID, Cloud Computing. Google как пример распределенной вычислительной системы
Раздел 8	Технология MPI: общая концепция, процедуры, группы, коммуникаторы, типы данных. Синхронное и асинхронное взаимодействие процессов, коллективные операции, совмещение приема\передачи
Раздел 9	OpenMP: общая концепция. Основные конструкции для организации параллельных и последовательных секций, для распределения работы между нитями, синхронизация нитей и работы с общими и локальными данными
Раздел 10	Вычисления на графических процессорах: история развития. технологии (OpenCL, CUDA)